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Advances in Molecular Labeling, High Throughput
Imaging and Machine Intelligence Portend Powerful
Functional Cellular Biochemistry Tools
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Abstract Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is
fundamental to advances inmodern science and unraveling the functional details of cellular behavior is no exception.We
present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and
utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing
intracellular protein activitywith fluorescentmarkers, 2) high throughput (and automated) imaging ofmultilabeled cells in
statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern.
Although not addressed here, the importance of combining cell-image-based information with detailed molecular
structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the
potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer
biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular
components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware)
and molecular biochemistry. J. Cell. Biochem. Suppl. 39: 194–210, 2002. � 2002 Wiley-Liss, Inc.
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Imaging and molecular labeling are com-
bining to build powerful investigative tools
for functional cellular biochemistry. Knowledge

gained from the genomics and proteomics re-
volutions are perhaps in some senses over-
whelming the ability of current laboratory
methods such as gel electrophoresis, mass spec-
troscopy, computational prediction methods,
and protein chips for protein studies. Although
higher throughput versions of these kinds of
techniques continue to be developed [Hiroaki,
2002], the need for high throughput measure-
ments of molecules directly in cells is apparent
due to their tremendous complexity [Gibbs,
2001]. Prospects for labeling techniques com-
bined with high throughput microscopy (HTM)
and higher-level machine intelligence are pre-
sented here. HTMmay at first only seem to add
to the potential information overload. But the
prospects for machine intelligence and smart
database collation of information facilitate a
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vision of the future where comprehensive
cellular protein-activity-structure-function is
available for substantially all molecules in a
cell. Realization of such a vision depends on the
continued advances in computer power and
storage for possibly a few decades.
Intracellular molecular function is in and of

itself complex because a single enzyme may
have multiple activators and/or inhibitors. The
prospects for labeling intracellular protein
activity are described in Section I. The complex-
ity of obtaining information from multilabeled
cells in statistically significant numbers would
be simplified by intelligent automation. The
prospects for imaging cells with automated
HTM are described in Section II. The function
of intracellular proteins can best be under-
stood in the context of subcellular location. The
prospects for automatically differentiating pro-
teins from one another using machine intelli-
gence to analyze subcellular localization and
pattern are described in Section III. Driven by
new understanding of proteins and function,
molecular labels have the potential to revolu-
tionize cellular diagnostics. The prospects for
diagnosing cells using molecular labels are
described in Section IV. Diagnostics based on
molecular labels are best understood in the
context of the patterns of expression in disease.
The prospects for learning new information
about molecular patterns of cancer using tissue
microarrays aredescribed inSectionV. Imaging
automation and the broad array of developing
cellular molecular knowledge have the poten-
tial to accelerate drug discovery. The prospects
for discovering drugs by imaging subcellular
molecular activity are described in Section VI.
These prospectives represent a snapshot of
only a portion of the tremendous potential for
molecular imaging.

PROSPECTING INTRACELLULAR PROTEIN
ACTIVITY WITH FLUORESCENT LABELS

Using proteins tagged with fluorescent dyes,
the ability to study proteins in their native
environment has been a critical tool in cell
biology for over two decades [Taylor and Wang,
1980]. However, this approach has been limited
to proteins that could be labeled and reintro-
duced into correct cellular compartments via
methods such as microinjection. A revolution in
using fluorescence techniques to study biologi-
cal systems came with the discovery of green

fluorescent protein (GFP) and its analogues
derived from the jellyfish Aequoria victoria
[Chalfie et al., 1994; Heim and Tsien, 1996].
The advantage of GFP is that it can be cloned
into expression constructs and used by simple
transfection to attain stable expression inmany
cell types. Initial use of GFP was limited to
tagging proteins to observe the changes in
localizations in vivo [Misteli and Spector, 1997].
In these early fluorescent protein analogues,
constructs were purposely designed not to
disturb the fluorescence characteristics of
GFP, so that the protein localizations could be
quantified with ease. With this approach, bulk
translocations of proteins could be observed;
however, functional changes such as post-
translational modification or conformational
changes could not be detected.

Rapid developments in addressing the limita-
tions of GFP-tagged fluorescent protein analo-
gues came in the form of fluorescence resonance
energy transfer (FRET) biosensors [Adams
et al., 1991; Heim and Tsien, 1996; Miyawaki
et al., 1997]. These sensors utilized GFP and its
mutants in different ‘‘colors’’ and sometimes
other fluorescent dyes with overlapping fluor-
escence excitation and emission spectra. When
the two fluorophores come within approxi-
mately 80 Å of one another, FRET takes place,
such that excitation of the donor fluorophore
produces emission from the acceptor fluoro-
phore. The primary advantage of this technique
is the ability to monitor interactions between
two components within a cell; i.e., by tagging a
protein with donor CFP and monitoring accep-
tor emission from the YFP attached to another
protein, one observes FRET emission onlywhen
the two proteins come together. Several var-
iants of this technique have been developed to
observe more specific aspects of protein activity
(Fig. 1). Successful use of strategies includ-
ing protein transducers, and intra- and inter-
molecular FRET probes have been reported
[Adamset al., 1991;Hahnet al., 1992;Miyawaki
et al., 1997; Llopis et al., 1999; Ting et al., 2001;
Haj et al., 2002]. Of these variants of FRET
biosensors, domain or antibody-based biosen-
sors (Fig. 1d) offer the ability to monitor
exposures of active sites of endogenous proteins
during cellular events such as cell adhesion,
spreading, and migration [Chamberlain and
Hahn, 2000; Kraynov et al., 2001]. Domains
used in this approach are a small peptide
sequence derived from the consensus binding
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regions of downstream effectors for the target
protein of interest. Similarly, antibodies specific
to the target protein can be labeled with fluoro-
chromes and used as biosensors [Haj et al.,
2002].

Signal transduction is perhaps the area in
which FRET biosensor technology has had the
most impact. Work in a few laboratories has
targeted activation and subsequent domain-
exposure events for a number of Rho-family of
GTPase proteins [Kraynov et al., 2001; Del Pozo
et al., 2002; Katsumi et al., 2002]. GTPase

proteins were tagged with GFP in the N-
terminal region, away from areas of the protein
critical for bioactivity, and a binding domain
derived from the effector molecules was tagged
with an acceptor fluorochrome. Upon activation
of the GTPase and binding of the activated
GTPase to the domain-sensor probe, GFP and
the fluorochrome were brought into close proxi-
mity, effecting FRET. In the example (Fig. 2),
Rac GTPase tagged with GFP was expressed
as a fusion protein, and PBD (PAK Binding
Domain) labeled with Alexa546 dye was micro-
injected into cells. As can be seen from the
figure, FRET signals revealed highly localized
exposures of domain binding activity correlat-
ing with the direction of cell polarization,
whereas the GFP and Alexa546 images showed
the very different whole-cell distribution pat-
terns of these proteins.

There are certain limitations associated with
the use of FRET biosensors. Some proteins
cannot be tagged with GFP or a dye without
perturbing native biology. Another potential
issue may be competitive binding between the
domain-biosensors and native ligands. New
approaches on the horizon will likely conquer
these issues by engineering sensors that can
bind to endogenous, untagged proteins. Alter-
natively, proteins can be directly labeled with
novel, solvent-sensitive dyes that report protein
activation, or by using circularly permutedGFP
constructs [Hahn et al., 1992; Baird et al., 1999;
Nalbant et al., 2001; Hahn and Touchkine,
2002; Touchkine et al., 2003].

IMAGING CELLS WITH AUTOMATED HIGH
THROUGHPUT MICROSCOPY

High throughput imaging has the potential to
automatically correlate cell structure, function,
and behavior with the wealth of cell molecular
information generated by genomics and proteo-
mics efforts. Instead of sitting for hours, days,
months, or even years in front of themicroscope
to understand how molecules govern cell be-
havior, high throughput microscopy instru-
mentation automates image acquisition, cell
measurement (cytometry) andwill soon provide
high level interpretation of cell type and be-
havior, all at speeds orders of magnitude faster
than humans.

HTM means high speed, which cannot be
achieved without complete automation. The
ability to place a slide or microtiter plate on

Fig. 1. Types of FRET biosensors. a: Intermolecular FRET. FRET
between donor and acceptor fluorophore attached to two
separate proteins. When proteins come together, FRET is
observed. b: Intramolecular FRET. FRET occurs between two
fluorophores attached to a single protein. Upon protein activa-
tion and a conformational change, two fluorophores are brought
closer together to be detectable by FRET. c: Protein transducer.
Proteins can be engineered in such away as to induce large shifts
in conformation upon binding to certain ligands, thus bringing
the two fluorophores within FRET proximity. In this example,
binding of calcium induces a conformational shift in the protein
to expose a hydrophobic pocket, where the peptide (in blue)
binds to cause a large shift in the linker arm attached to the
second fluorophore [Miyawaki et al., 1997]. d: Domain/anti-
body-biosensors. A small peptide or antibody attached to a
fluorophore selectively binds to the target protein upon activa-
tionof theprotein. Thebindingdomain/antibody canbe attached
or not attached to the protein of interest. [Adapted from
Chamberlain and Hahn, 2000]
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the microscope, push a button, and return later
with thousands to millions of cells analyzed
requires automatic focus and stage motion to
acquire the images, computerized image seg-
mentation to locate the cells in the images,
analysis software to collatemeasurements from
each cell and high level tools for retrieval and
visualization of the results. The process of
scanning the specimen, performing autofocus
and acquiring the images is shown in Figure 3.
Whereas inmacroscopic photography autofocus
may be acceptable if it works say 9 out of 10
times with a precision of a meter or so, in high
resolutionmicroscopy, autofocusmustbe robust
over tens of thousands of fields (depending on
magnification and field of view, FOV) with
submicron precision just to analyze a single
microscope slide. Slides surfaces vary by as
much as � 10 mm and microtiter plate surfaces
by > 100 mm. The microscope itself is also
unstable and temperature changes can alter
focus position through ranges of 10–20 mm over
24 h in a typical lab [Bravo-Zanoguera, 2001].
This makes autofocus for microscopy a challen-

ging task and several different criteria for
finding the most in focus image have been
tested. Usually for several different z-positions
a focus score or focus index is calculated, which

Fig. 2. Madin-Darby canine kidney (MDCK) cells expressing
Rac GTPase tagged with GFP. A p21-binding domain from PAK
(PBD) conjugated to Alexa 546 dye (Molecular Probes, Inc.,
Eugene, OR) was produced in vitro and microinjected into cells
expressing the GFP-Rac GTPase fusion protein. FRET signals
were detected only where the domain biosensor bound to the
active Rac GTPase, showing specific localization of activity (left

column; red, areas of high FRET signal; blue, areas of low FRET
signal). Fluorescence signals from GFP-Rac GTPase (middle
column) and the Alexa546-PBD (right column), show that the
distribution of the protein can be seen to be quite different from
that of the activated protein. Rac is activated at the leading edge
of moving cells, and in the juxtanuclear region. [Figure courtesy
C. Chamberlain, J. Ehrlich, J. Nelson, and K. Hahn].

Fig. 3. Scanning and autofocus: Best focus is calculated from a
series of several test focus positions (typically 5–9) and set before
image acquisition and processing. The stage then moves to the
adjacent field and autofocus is repeated with best focus from the
previous field providing the center of the autofocus search range
(�2–4 mm). Stage motion, autofocus, and imaging occur in as
little as 0.3 s/field and autofocus precision is<100 nm. [Adapted
from Bravo-Zanoguera, 2001].
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is a measure of the resolution (high frequency
content), contrast, or entropy of the image
[Groen et al., 1985; Price and Gough, 1994;
Bravo-Zanoguera et al., 1998;Geusebroek et al.,
2000]. From these focus indices, the highest
value is chosen as the optimal focus position.
Research at UCSD has created HTM that ope-
rates with up to high-dry magnification objec-
tives (0.95 numerical aperture, NA) at speeds of
3 fields/s (Hz) and recently proven technology
(reports in progress) will increase this 10-fold
[Bravo-ZanogueraandPrice, 1998;Bravo-Zano-
guera et al., 1999; Nguyen et al., 2000]. This
instrumentation is based on autofocus that
works in 0.25 s with a precision of < 100 nm
(SD) [Price and Gough, 1994; Bravo-Zanoguera
et al., 1998; Oliva et al., 1999] and lamp
stabilization with 10–30 fold lower coefficients
of variation (CVs) than the conventional Hg
vapor lamp [Heynen et al., 1997]. This system
has been demonstrated to be able to find as few
as 1:20 million cells in ultra-rare cell detection
(with analysis of 5 million cells/slide) [Bajaj
et al., 2000].

Each image can contain from a few large cells
at highmagnification to thousands of small cells
at low magnification. In HTM, the computer
locates each cell by segmenting the image into
regions. The region of pixels is then used to
make measurements of, e.g., quantity, shape,
pattern, and distribution of labeled intracellu-
lar molecules. There has been a wide range of
image segmentation methods applied to biome-
dical imaging, among which are global or
adaptive thresholding, texture based classifica-
tion, region growing, neural networks, Markov
randomfield approaches, andadaptive contours
[Fu and Mui, 1981; Pal and Pal, 1993; Price
et al., 1996; Saeed, 1998]. All these methods
perform with different accuracies, different
execution times and require different levels of
user-interaction, which makes them suitable
for certain specific applications but unsuitable
for others. With images acquired at 3–30 Hz,
image segmentation must be fast and because
subsequent cytometry accuracy is dependent on
correctly identifying pixels belonging to the cell,
it must also be accurate. Because cells stained
with fluorescent dyes exhibit large differences
in intensity, simple thresholding does not per-
form well and other techniques untested on
cell images [Pal and Pal, 1993] are too slow. A
real-time image segmentation method for fluor-
escently stained cell nuclei makes cell identi-

fication largely independent of fluorescence
intensity [Price et al., 1996]. Themethodutilizes
nonlinear least-squares-designedfinite impulse
response (FIR) filters to create marked object-
background contrast for automatic histogram-
based thresholding. The contrast improvement
shown on the left in Figure 4 is the key to
accurate automatic image segmentation. This
contrast makes result much more threshold-
independent; dim cells are segmented with the
sameaccuracyas bright ones over amuch larger
intensity range than was previously possible.
Segmentation accuracywas 93% (percent of cor-
rect pixels as compared with computer-assisted
human segmentation) [Price et al., 1996].

In addition to precise autofocus and accurate
computerized image segmentation, automation
must include collation of data-and-images in a
relational database for rapid plotting, sorting,
and access to images of cell subpopulations
characterizedbyspecifiedmeasurementranges.
Even with these tools, plotting data and itera-
tively experimenting with different measure-
ment ranges to find say the G2/M dividing cells
or perhaps ultimately the cancer cells mixed in
with normal ones in a clinical sample, is too
tedious. The machine thus needs the intelli-
gence to locate groups of cells with shared
characteristics automatically and report them.
Examples of higher-level machine intelligence
that may lead to this kind of automation follow
in the next two sections.

PROSPECTING FOR SUBCELLULAR
LOCALIZATION AND PATTERN
USING MACHINE INTELLIGENCE

As genome sequencing efforts reached com-
pletion over the past few years, a major effort
was begun to identify the genes expressed in
many cell types under various conditions (e.g.,
via DNA chips). More recently, as the diver-
gence between expression levels of RNA and
protein for many genes has been appreciated,
the focus has shifted again from measuring
RNA levels to measuring protein expression.
Commonly used proteomics methods included
gel electrophoresis, mass spectroscopy, compu-
tational prediction methods, and protein chips
[Yarmush and Jayaraman, 2002]. Proteomics
methods allow investigation of protein expres-
sion for a particular cell type under a specific
condition as well as examination of protein
structure, function, and interactions. However,
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high throughput methods are also needed for
the analysis of protein location within cells
[Boland et al., 1997; Murphy et al., 2000], since
knowledge of subcellular location is required for
a full understanding of a protein’s function. The
most common method used to examine subcel-
lular localization is to mark a specific protein
with a specific fluorescent tag and then image
the cell expressing it using fluorescence micro-
scopy. The goal of this type of fluorescent
tagging is distinct from the creation of fluor-
escent-protein biosensors that are designed to
provide insights into molecular processes in
living cells [Giuliano and Taylor, 1998] as
described in the first section. For determination
of location patterns, the goal is to specifically
avoid the environmental sensitivity required
for biosensors and instead to tag as many
proteins as possible in as many different loca-
tions within each protein. For this purpose, an
excellent method is the creation of internal
fusionswith fluorescent proteins (such asGFP),

a method termed CD-tagging [Jarvik et al.,
1996, 2002; Telmer et al., 2002].

Extensive work over the past six years has
shown that proteins have characteristic cellular
patterns that can be recognized computation-
ally in 2D [Boland et al., 1997, 1998; Murphy
et al., 2000, 2002; Boland and Murphy, 2001;
Danckaert et al., 2002] and 3D [Velliste and
Murphy, 2002] images. This work allows us
to envision high throughput identification of
cellular proteins and their localization from
fluorescencemicroscopy images. Objective com-
puterized recognition of unique subcellular
patterns eliminates interobserver variations
and provides a useful ‘‘fingerprint’’ of each
protein that may also aid understanding of
function. Examples of patterns (obtained by
immunofluorescence microscopy) that can be
distinguished with high accuracy are shown in
Figure 5. The basis for this distinction is the
calculation of numerical descriptions of the
patterns, termedSubcellular LocationFeatures

Fig. 4. Contrast enhancing least-squares-designed FIR image
segmentation. Original montage image of DAPI stained cell
nuclei (upper left), contrast enhanced filtered image (lower left),
resulting edges (upper right) in yellow overlaid on the edgemaps
from the best threshold of the original image (magenta) and the

manually segmented ideal edgemaps (cyan). Magnified views of
selected edge maps (lower right) are shown to demonstrate the
improvement afforded by these filters. [Adapted from Price et al.,
1996].

Functional Cellular Imaging Tools 199



[Boland and Murphy, 2001]. These features
describe a range of characteristics of each
image, such as thenumber of fluorescent objects
per cell, the average distance of fluorescent
objects from the center of the cell, and texture
measures of the correlation between gray levels
of adjacent pixels. The measured values of the
features can be used to train classifiers (e.g.,
neural networks) and the trained classifiers can
be used to assign a pattern to previously unseen
images. For images showing the subcellular
locations depicted inFigure 5, anaverage classi-
fication accuracy of 83� 4.6% (mean� 95%
confidence interval) has been reported for
classification of single images [Boland and
Murphy, 2001]. If a set of ten images from the
same population is analyzed and the population
class is determined by assigning the class label

that a plurality of the members were assigned,
the classification accuracy can be increased to
98% [Boland and Murphy, 2001]. More recent
studies yielded 88% accuracy for single 2D
images accompanied by a parallel DNA image
[Murphy et al., 2002] and 91% for single 3D
images [Velliste and Murphy, 2002]. As illu-
strated in Table I, a key result from these
studies is that the systems can discriminate
between patterns that are indistinguishable by
human observers (the patterns of the Golgi
proteins giantin and gpp130 can be distin-
guished with greater than 80% accuracy while
human observers cannot distinguish themwith
greater than the 50%accuracy that results from
guessing). With such high classification accura-
cies, automated analysis of cellular protein
localization from fluorescence images can be
expected to become an independent tool for
understanding the structure-function relation-
ships of proteins.

The development of automated screening and
analysis methods for microscope images will
have a significant impact in several fields
[Giuliano and Taylor, 1998; Boland and Mur-
phy, 1999]. The quantitative description and
automated classification of protein localization
provides the opportunity for a standardized
database againstwhich a protein pattern can be
compared and classified [Huang et al., 2002].
The Subcellular Location Features have also
been used to provide an objective method for
comparing sets of protein patterns, such as for a

Fig. 5. Representative images from the classes used as input to
the classification systems described in the text. These images
have had background fluorescence subtracted and have had all
pixels belowa threshold set to 0. Images are shown forHeLa cells
labeled with antibodies against ER protein (A), the Golgi protein
giantin (B), the Golgi protein GPP130 (C), the lysosomal protein
LAMP2 (D), a mitochondrial protein (E), the nucleolar protein
nucleolin (F), transferrin receptor (H), and the cytoskeletal
protein tubulin (J). Images are also shown for filamentous actin
labeled with rhodamine-phalloidin (G) and DNA labeled with
DAPI (K). Scale bar¼ 10 mm. [From Boland and Murphy, 2001.]

TABLE I. Classification Results for
3D Confocal Images of HeLa Cells

Confocal images of the same markers shown in Figure 1 were
collected, 28 numerical features were calculated for each image
(feature set 3D-SLF9), and a neural network classifier was
trained with a portion of the images. The prediction of the
classifier for the remainder of the images was compared to the
true class; the values in the table show the fraction of the images
that are actually from a given class (shown in the rows) that
were classified as belonging to a particular class (shown in the
columns). The overall accuracy is 91% across all 10 classes.
[From Velliste and Murphy, 2002.]
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protein in the presence and absence of a drug
[Roques and Murphy, 2002]. The addition of a
protein localization pattern database to the
existing protein structure databases will pro-
vide exciting new insights into the relationships
between function, transport, and interaction
of different proteins in living cells. Combining
the computerized ability to obtain protein
pattern signatures with the high throughput
automated acquisition of images described in
the previous section, provides the prospect for
rapid development of comprehensive databases
that store this information for virtually all cell-
ular proteins.

PROSPECTING FOR NEW CYTODIAGNOSTICS
BY IMAGING MOLECULAR LABELS

Over the last few decades, the advances in
computation speed, imaging, and high through-
put analysis methods have opened up new
diagnostic opportunities in the biological and
health sciences. For example, the search for
molecular markers for cancer detection, a sub-
set of molecular biomarkers, has continued to
expand [Srivastava and Gopal-Srivastava,
2002; Wu et al., 2002]. Biomarkers that have
become useful in cancer diagnostic include
prostate specific antigen (PSA), cancer antibody
or tumor marker 125 (CA125), cancer antigen
15-3 (CA15-3), several cytokeratins, some cell
surface antigens (MUC1 &MUC2), and several
growth factors (TGF-a, TGF-b, erb-2, erb-3)
[Brotherick et al., 1998; Braun et al., 1999;
Zimmerman et al., 2000; Srivastava and Gopal-
Srivastava, 2002]. The combination of new
biomarkers and advanced high-throughput
imaging technologies for analyzing subcellular
molecular characteristics using, e.g., fluores-
cence microscopy, offers tremendous potential
for new cytodiagnostics.
If one or more biomarkers for a specific

disease are found, high throughput imaging
methods may be applied to screen body fluids
containing exfoliated cells for early cancer
detection. Automated microscopy image acqui-
sition at high throughput rates for slides, cell
culture chambers, or well plates has made
substantial progress [Price, 1990; Bravo-Zano-
guera et al., 1999; Bajaj et al., 2000] and higher-
level image interpretation may provide power-
ful automated diagnoses. The addition of
sophisticated image analysis methods will pro-
vide new, completely automated imaging ave-

nues for studying, classifying, and interpreting
cellular molecules. These methods may also
aid in understanding the underlying molecular
disease mechanisms and thereby facilitate
development of new anticancer therapeutics
[Giuliano and Taylor, 1998; Srivastava and
Gopal-Srivastava, 2002; Wu et al., 2002].

High-level image interpretation has been
used in a wide range of applications [Hudson
and Cohen, 2000; Duda et al., 2001] including
microscope images of: cervical smears [Kemp
et al., 1997; Mackin et al., 1998; Van der Laak
et al., 2002]; premalignant prostate, colon and
esophageal tissue [Weyn et al., 2000]; and
cultured cells [Boland et al., 1998; Boland and
Murphy, 2001]. However, automated image
interpretation using classical clinical stains
(e.g., hematoxylin and eosin, and variations of
the Pap stain) has only shown limited success
[Bartels and Vooijs, 1999]. The combination of
using fluorescent biomarkers and automated
high-level image interpretation offers an excit-
ing new alternative for classification (diagno-
ses) of cells and tissue. One cellular diagnostic
category enabled by high throughput cellular
classification is detection of rare and ultra-rare
cells in blood and other large cell populations.
Classification of cellular objects in images of
tissue stained with specific fluorescent labels is
performed as shown in Figure 6. In this simple
example, all the objects (including debris)
encountered in HTM images of large popula-
tions of fixed cells are first grouped into single
cells, cell clumps, cell doublets, debris, blurred
objects, hyperploid cells, and mitotic cells. This
highlights the fact that in fully automated
imaging, the system must first identify general
classes of cells in order to then carry out, e.g.,
cancer versus normal classification. This is
because amitotic cancer cell may differ somuch
from a normal G0/G1 cell that it could not be
classified. That is, it may be necessary to find
mitotic and G0/G1 cells and then classify
normal and cancer mitotic cells and normal
and cancer G0/G1 cells. From the images, the
objects are extracted using image segmentation
techniques [Duda and Hart, 1973; Price et al.,
1996; Jaehne, 1997] and different measure-
ments, referred to as features, are performed on
these objects. The features with the highest
discriminating power are selected and com-
bined in the feature set (too large of a number of
features makes the classifier too complex and
requires a large amount of training data, a too
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small number of featuresmightnot separate the
classes with the desired accuracy). An example
of one pair of features (mean intensity and
radius minimum) in the set used for the seven
classes is shown on the upper right panel of
Figure 6. A classifier (e.g., a linear discriminant
function, a neural network, a probability-based
Bayesian classifier, a nearest neighbor classi-
fier, or clustering techniques [Hudson and
Cohen, 2000; Duda et al., 2001]) processes the
features and finds classes of grouped features
that characterize types of cells. In most cases
the classifier requires a training set to deter-
mine its parameters. The performance of the
developed classifier on naı̈ve test data is re-
ported as confusion matrix, shown at the lower
right of Figure 6, where the diagonal represents
the correctly classified number of cells. Such a
confusion matrix also allows analysis of simila-
rities of classes, e.g., for this case the ‘mitotic

cells’ had a very large confusion ratio with
‘doublets,’ about 40%. This suggests similarity
in odd shapes occurring both in ‘doublets’ and in
‘mitotic cells.’

The resulting performances of the automated
high-level image interpreters can vary widely
(anywhere between 60 and 100%) depending on
how similar the object classes are, how discri-
minating the molecular biomarker(s) used for
imaging is (are), and whether the differences in
the imaged objects are simple on-off decisions,
like for rare event detection of fetal nucleated
red blood cells in maternal peripheral blood
[Bianchi, 1999; Bajaj et al., 2000; Bianchi et al.,
2002; Yamanishi et al., 2002], images of which
are shown in Figure 7 (left), or fine differences,
e.g., in texture of the molecular marker that
can classify cells with malignancy associated
changes [Kemp et al., 1997]. An example of a
breast cancer specificmarker, anti-cytokeratin-

Fig. 6. Examples of automated cell classification using the
molecular DNA probe DAPI. In this case classification was
performed to distinguish the different cell objects encountered
during cell-by-cell analysis of slides using HTM. The left panel
shows the seven different object classes, the right top panel

shows a scatter plot of two of the features selected for the feature
set, and the right bottom panel gives the results of a linear dis-
criminant function classifier for previously unseen cell objects.
[From Heynen, 2002.]
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19 is shown in Figure 7 (right). In these and
other applications, molecular imaging has the
potential to alter cytodiagnostics, especially
when combined with powerful new machine
intelligence algorithms for interpreting images
of millions of cells acquired with high-through-
put microscopy.

PROSPECTING FOR MARKERS BY
IMAGING TISSUE MICROARRAYS

Molecular microarrays, including DNA, RNA
and protein arrays, have become important
tools for finding disease characteristics and
mapping normal expression by testing patterns
from thousands of molecules on one or a few
homogenized tissues. Tissue microarray (TMA)
analysis is a complementary method that can
test the resulting hundred or somolecular array
hits on many intact tissue sections on a single
slide. Hundreds to thousands of cylindrical
cores (of 0.6–1.5 mm diameter and up to
2.5 mm long) are biopsied from tissue blocks,
and arrayed in a single new paraffin block
[Kononen et al., 1998; Skacel et al., 2002]. The
new block is sectioned and placed on slides, and
the molecular patterns are analyzed directly in
the tissues to confirm that they are unique to a
particular type of tissue [Kononen et al., 1998].
Validation of normal versus cancer expression
or one type of normal tissue against another is a
key advantage of TMAs over molecular arrays.
The presence of many tissue samples on one
slide dramatically increases the processing and
analysis rates. Many patients with, e.g., breast
cancer, can be studied for protein expression
patterns simultaneously after identical pre-
paration. A single tissue microarray block can
be analyzed for genotype or expression by DNA
and RNA in situ hybridization (ISH, or fluores-
cence, FISH), and by immunohistochemistry

(IHC) or immunofluorescence (IF) [Skacel et al.,
2002].

In the program on Apoptosis and Cell Death
Regulation at the Burnham Institute, research-
ers can immunostain up to 240 TMA slides/
week, but it takes one pathologist 2–3 h to read
each slide, making the analysis about 10-fold
more time consuming than thepreparation (and
preparation automation efforts continue, see
e.g., Beecher Instruments, www.beecherinstru-
ments.com). Although several semi-automated
TMAreaders are commercially available [exam-
ples include: Chromavision, Inc., (www.chro-
mavision.com), Biogenix (www.biogenex.com),
and Aperio (www.aperio.com)], fully auto-
mating the process of scoring the TMAs is
challenging because it means both machine
identification of normal versus cancer tissue (or
different types of normal tissue) and densito-
metry of expression markers in clinically
stained samples. Using HTM developed at
UCSD, TMA slides can be scanned and the
images collated and montaged for scoring and
storing in databases as shown in Figure 8.
Although some researchers are exploring the
use of fluorescencemarkers [Camp et al., 2000],
pathologists often prefer to diagnose the cancer
tissue using clinical stains [Krajewski et al.,
1994, 1999; Krajewska et al., 2002]. Thus,
whereas measuring the intensities of a few
fluorescence signals with wavelengths is rela-
tively trivial, separating overlapping broad-
spectrum wavelengths of, e.g., hematoxylin
and the immunohistochemical stain diamino-
benzidine (DAB), is more challenging. Multi-
spectral techniques are being explored andhave
shown great promise for determining the con-
tribution of each dye to the color and density of
each pixel [Gat, 2000; Levenson andHoyt, 2000;
Macville et al., 2001; Ruifrok and Johnston,
2001]. We have also begun exploring texture

Fig. 7. Left: Fetal nucleated RBCs stained with
centromeric FISH probes for the X- and Y-chromo-
somes, DAPI for the nuclei and anti-g-globin-FITC
for fetal hemoglobin. Right: FITC-DAPI cell image
obtained showingcytokeratin-19-positivecells (green)
with DAPI-stained cell nuclei (blue).
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segmentation techniques that may successfully
separate normal and cancer tissue. As an
example, Figure 9 shows a texture-based tech-
nique largely successfully delineating normal
glandular and stromal tissue.

Combining automated TMA preparation
with fully automated analysis holds promise
for very rapid prospecting ofmolecular patterns
of cancer. Database software for storing and
retrieving TMA images and data will provide
efficient access to the large sets of data gener-
ated by automated processes [Manley et al.,
2001]. For rapid understanding of the relation-
ship of this molecular information to disease
and treatment, the patient treatment and out-
come data must also be available to clinical
researchers. Amulti-hospital tissue and clinical
records database that can serve as a model for
completing the picture is under construction in
Australia (Personal communication, Nikolajs
Zeps, Western Australia Institute for Medical
Research, and www.nbcf.org.au/prioritie-
sperth.shtml#d). Ultimately, worldwide clinical
databases that facilitate tracking of treatment
and outcome data as a function of molecular

markers would create an unparalleled oppor-
tunity for cancer diagnostic and therapeutic
discoveries.

PROSPECTING FOR DRUGS BY IMAGING
SUBCELLULAR MOLECULAR ACTIVITY

Biological drug discovery is struggling to
integrate the flood of new information emerging
from the genomics and proteomics revolutions.
While many high throughput tools provide lists
of genes and proteins in cells, pharmaceutical
researchers are increasingly asking for a com-
prehensive tool set for rapidly acquiring and
integrating cell-molecular, cell-structural, and
cell-functional data linked directly to compound
responses [Giuliano et al., 1997]. Although the
simplest living cell is probably too complex for
exactmodelingby themost powerful computers,
even relatively simple models may shake the
foundations of biology [Gibbs, 2001]. A typical
high throughput screening (HTS) instrument
processes thousands to tens of thousands of
compounds a day by rapidlymeasuring the bulk
response of all of the cells in each well in a

Fig. 8. A rectangular area was automatically scanned at 20� by HTM (with several images/core) and the
images were processed to produce a downsampled montage image (upper left). The individual cores were
automatically located in the downsampled montage and used to guide computerized reassembly of high-
resolution montages of each core (right). The native high-resolution views were then available by selecting
regions for zooming (lower left).
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microtiter plate. The amount of a cellular
product, such as cytokine interleukin 2 (IL2),
can be assayed in thismanner as an end-point to
inhibition or excitation by a library of com-
pounds. A given compound may result in, e.g.,
the secretion of IL-2, but the researcher does not
know which signaling pathway was utilized, or
if there were other cellular responses. If the
signaling pathway used also led to cell toxicity
or death, the efficacy of the candidate drug
would be compromised and the information
might not be learned until failure inmore costly
and controversial animal testing. Multiplexed
cellular responses need to be investigated to
decrease these kinds of false positive leads in
drug discovery. Dissecting the steps in cellular
pathways is important because multiple path-
ways converge and diverge to provide redun-
dancy and for coordinated cellular behavioral
responses.
A number of commercially available instru-

ments (including those from Cellomics, Univer-
sal Imaging, Axon, Q3DM, and Amersham) are
addressing the need for automated microtiter
plate instruments that automatically provide
cell measurements from images. Nuclear-cyto-

plasmic translocation is a commonly addressed
cellular dynamic whereby a labeled protein
moves between the cytoplasm and the nucleus
upon stimulation [Auphan et al., 1995; Verma
et al., 1995; Ding et al., 1998; Mercié et al.,
2000]. In Figure 10, some results of a nuclear-
cytoplasmic translocation experiment involving
stimulation of the GR receptor by dexametho-
sone are shown. The software in Figure 10 is
also an example of the integrated image acqui-
sition, processing, and analysis that provides
for walk-away automation of these kinds of
measurements over large numbers of cells,
wells, and microtiter plates. Automation of
cell-by-cell measurements for routine use
in every assay has been very challenging.
Advances in image segmentation (see Fig. 4)
have led to instrumentation where cell-by-cell
measurements are the basis of all image
cytometry assays. Another type of translocation
where image segmentation enabling cell-by-cell
measurements is even more challenging is the
formation of pits (or vesicles) as shown in
Figure 11. In this example, the pits are very
small and the measurement precision is much
better using higher resolution (0.95 NA) optics.
The corresponding dose response curve is for
stimulation of pit formation by isoproterenol.

Automation and speed are important but
must be accompanied by measurement fidelity
for efficient analyses. Figure 12 shows that the
number of cells required for a given statistical
significance increases exponentially for a given
SD as statistical significance requirements be-
come more stringent. This family of curves
demonstrates that it may be much less costly if
high precision measurements can be made
because lower SDs achieve the same minimum
significant responsewithmuch fewer cells. This
dependence on the fidelity of image mea-
surements may also be true in the examples of
high-level cell classification in the previous
sections. The impact of the measurement pre-
cision is easy to overlook but may have sub-
stantial contributions to the usefulness of the
conclusions.

The examples of translocation in Figures 10
and 11 included stains for both the protein of
interest and the DNA. In preliminary NFkB
translocation experiments performed under
similar conditions as previously published [Ding
et al., 1998], the SD of FLIN was found to be
smaller for G0/G1 cells. In transient transloca-
tion experiments, only a few cells may be

Fig. 9. The original image containing both stroma and
glandular regions was broken in two independent regions based
on texture elements.
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expressing the desired tag as verified by a co-
transfected label. Analyzing only the trans-
fected cells, which can represent as little as a
few percent of the total cells, is very important

for measuring the dose responses. Cell hetero-
geneity increases dose response complexity.
Even in cloned cell lines, cell cycle position and
phenotypic variations create differences in cell

Fig. 10. CytoshopTM software by Q3DM, Inc., shows the
cytometrics list (left), an image table with a pan-and-scroll view
of the entire scan area (background, largewindow) and a series of
images with corresponding histograms of the fluorescent
localized intensity of the nucleus (FLIN¼ nuclear intensity/

cellularþnuclear intensity). Cells were labeled with GFP for the
glucocorticoid receptor (GR) and stimulated with increasing
concentrations of dexamethosone, which stimulates GR causing
it to translocate into the nucleus. [Labeled cells courtesy of
Gordon Hager, National Institutes of Health.]

Fig. 11. Pit formation in human osteosarcoma cells. Example
40x 0.95 NA fluorescent micrographs of the Norak TransfluorTM

GPCR pit formation assay using the Q3DM EIDAQTM 100 HTM
instrument. GFP expression (green) and Hoechst staining (blue)
are visualized before (left) and after (middle) pit formation. The

dose response curve (right) shows measured normalized pit
formation in U20S cells expressing the beta-2-adrenergic
receptor and beta arrestin 2 fused to GFP as a function of
isoproterenol concentration. The EC50¼1.48 nM (�0.11). (Cells
courtesy of Norak Biosciences, Morrisville, NC).
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behavior. A lead that acts on a cellular process
correlated to DNA synthesis will elicit a max-
imal change in response in S-phase cells.
Averaging the response from all the cells in a
well may require laborious cell cycle synchroni-
zation or result in overlooking an effective drug.
Image analyses ofmultiplexedDNAandprotein
stimulus-response labels correlates the com-
pound response to the cell cycle phase thereby
providing direct elucidation of more complex
compound responses. These are relatively sim-
ple examples of the use of multiple markers. As
experiments using high throughput cell-by-cell
imaging become more common, the demand for
automated analyses of multiplexed intracellu-
lar probes for direct measurements of more
complex cellular responses is only likely to
increase. The prospects for improved living
cell labels of protein activity (summarized
in the first section) are likely to continue to
drive the need for multiplexed probes and
measurements.

CONCLUSIONS AND PROSPECTS FOR
RICH INFORMATION FROM CELLULAR

MOLECULAR IMAGING

The tremendous prospects for molecular
imaging are best recognized in the context of
advances in both computing and biology. Engi-
neers and computer scientists (and perhaps
societies as a whole) have adapted to the
expectation of speed and storage continuing to

advance at least at the Moore’s law rate of two
fold every 18 months. Scientists have experi-
enced some of the potential benefits for bio-
logical research through the relatively rapid
advances in gene sequencing over the last 10–
15 years that were enabled by high throughput
technologies. The quest to understand cellular
molecular biochemistry frommolecular activity
to cellular behaviorswill be similarly enabledby
high throughput technologies. But the informa-
tion explosion represented in the detailed
molecular structure and function of hundreds
of thousands of different proteins in each cell
along with detailing signaling pathways will
require more than just a list. Computer models
(see, e.g., Physiome Sciences, www.physiome.-
com) and high-level machine intelligence will
also rapidly collate this information. And
although these computer models may never
lead to a perfect understanding of the cell
[Gibbs, 2001], the prospects are intriguing.
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